Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Pediatr Endocrinol Metab ; 37(4): 371-374, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38345890

RESUMEN

OBJECTIVES: To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION: A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS: MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Insuficiencia Ovárica Primaria , Simportadores , Masculino , Adolescente , Humanos , Femenino , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Diagnóstico Tardío , Insuficiencia Ovárica Primaria/genética , Transportadores de Ácidos Monocarboxílicos/genética , Translocación Genética , Simportadores/genética
2.
Mol Genet Metab ; 140(3): 107696, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690181

RESUMEN

PURPOSE: Individuals with urea cycle disorders (UCDs) may develop recurrent hyperammonemia, episodic encephalopathy, and neurological sequelae which can impact Health-related Quality of Life (HRQoL). To date, there have been no systematic studies of HRQoL in people with UCDs. METHODS: We reviewed HRQoL and clinical data for 190 children and 203 adults enrolled in a multicenter UCD natural history study. Physical and psychosocial HRQoL in people with UCDs were compared to HRQoL in healthy people and people with phenylketonuria (PKU) and diabetes mellitus. We assessed relationships between HRQoL, UCD diagnosis, and disease severity. Finally, we calculated sample sizes required to detect changes in these HRQoL measures. RESULTS: Individuals with UCDs demonstrated worse physical and psychosocial HRQoL than their healthy peers and peers with PKU and diabetes. In children, HRQoL scores did not differ by diagnosis or severity. In adults, individuals with decreased severity had worse psychosocial HRQoL. Finally, we show that a large number of individuals would be required in clinical trials to detect differences in HRQoL in UCDs. CONCLUSION: Individuals with UCDs have worse HRQoL compared to healthy individuals and those with PKU and diabetes. Future work should focus on the impact of liver transplantation and other clinical variables on HRQoL in UCDs.


Asunto(s)
Diabetes Mellitus , Hiperamonemia , Trasplante de Hígado , Fenilcetonurias , Trastornos Innatos del Ciclo de la Urea , Niño , Humanos , Adulto , Calidad de Vida , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Hiperamonemia/diagnóstico , Fenilcetonurias/complicaciones , Estudios Multicéntricos como Asunto
3.
Pediatr Res ; 94(6): 2005-2015, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37454183

RESUMEN

BACKGROUND: Urea cycle disorders (UCDs) cause impaired conversion of waste nitrogen to urea leading to rise in glutamine and ammonia. Elevated ammonia and glutamine have been implicated in brain injury. This study assessed relationships between biomarkers of metabolic control and long-term changes in neuropsychological test scores in participants of the longitudinal study of UCDs. The hypothesis was that elevated ammonia and glutamine are associated with neuropsychological impairment. METHODS: Data from 146 participants who completed 2 neuropsychological assessments were analyzed. Neuropsychological tests that showed significant changes in scores over time were identified and associations between score change and interim metabolic biomarker levels were investigated. RESULTS: Participants showed a significant decrease in performance on visual motor integration (VMI) and verbal learning immediate-recall. A decrease in scores was associated with experiencing interim hyperammonemic events (HAE) and frequency of HAE. Outside of HAE there was a significant association between median ammonia levels ≥50µmol/L and impaired VMI. CONCLUSION: VMI and memory encoding are specifically affected in UCDs longitudinally, indicating that patients experience difficulties when required to integrate motor and visual functions and learn new information. Only ammonia biomarkers showed a significant association with impairment. Preventing HAE and controlling ammonia levels is key in UCD management. IMPACT: The Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) and List A Trial 5 of the California Verbal Learning Test (CVLT) may be good longitudinal biomarkers of treatment outcome in urea cycle disorders (UCD). This is the first report of longitudinal biomarkers for treatment outcome in UCD. These two biomarkers of outcome may be useful for clinical trials assessing new treatments for UCD. These results will also inform educators how to design interventions directed at improving learning in individuals with UCDs.


Asunto(s)
Hiperamonemia , Trastornos Innatos del Ciclo de la Urea , Humanos , Estudios Longitudinales , Amoníaco , Glutamina , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Pruebas Neuropsicológicas , Biomarcadores
4.
Int J Neonatal Screen ; 8(2)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35466195

RESUMEN

X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. It results from pathogenic variants in ABCD1, which encodes the peroxisomal very-long-chain fatty acid transporter, causing a spectrum of neurodegenerative phenotypes. The childhood cerebral form of the disease is particularly devastating. Early diagnosis and intervention improve outcomes. Because newborn screening facilitates identification of at-risk individuals during their asymptomatic period, X-ALD was added to the Pennsylvania newborn screening program in 2017. We analyzed outcomes from the first four years of X-ALD newborn screening, which employed a two-tier approach and reflexive ABCD1 sequencing. There were 51 positive screens with elevated C26:0-lysophosphatidylcholine on second-tier screening. ABCD1 sequencing identified 21 hemizygous males and 24 heterozygous females, and clinical follow up identified four patients with peroxisomal biogenesis disorders. There were two false-positive cases and one false-negative case. Three unscreened individuals, two of whom were symptomatic, were diagnosed following their young siblings' newborn screening results. Combined with experiences from six other states, this suggests a U.S. incidence of roughly 1 in 10,500, higher than had been previously reported. Many of these infants lack a known family history of X-ALD. Together, these data highlight both the achievements and challenges of newborn screening for X-ALD.

5.
J Pediatr ; 246: 116-122.e1, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35358588

RESUMEN

OBJECTIVE: To assess the outcomes of neonates in a contemporary multi-institutional cohort who receive renal replacement therapy (RRT) for hyperammonemia. STUDY DESIGN: We performed a retrospective analysis of 51 neonatal patients with confirmed inborn errors of metabolism that were treated at 9 different children's hospitals in the US between 2000 and 2015. RESULTS: Twenty-nine patients received hemodialysis (57%), 21 patients received continuous renal replacement therapy (41%), and 1 patient received peritoneal dialysis (2%). The median age at admission of both survivors (n = 33 [65%]) and nonsurvivors (n = 18) was 3 days. Peak ammonia and ammonia at admission were not significantly different between survivors and nonsurvivors. Hemodialysis, having more than 1 indication for RRT in addition to hyperammonemia, and complications during RRT were all risk factors for mortality. After accounting for multiple patient factors by multivariable analyses, hemodialysis was associated with a higher risk of death compared with continuous renal replacement therapy. When clinical factors including evidence of renal dysfunction, number of complications, concurrent extracorporeal membrane oxygenation, vasopressor requirement, and degree of hyperammonemia were held constant in a single Cox regression model, the hazard ratio for death with hemodialysis was 4.07 (95% CI 0.908-18.2, P value = .067). To help providers caring for neonates with hyperammonemia understand their patient's likelihood of survival, we created a predictive model with input variables known at the start of RRT. CONCLUSIONS: Our large, multicenter retrospective review supports the use of continuous renal replacement therapy for neonatal hyperammonemia.


Asunto(s)
Hiperamonemia , Errores Innatos del Metabolismo , Amoníaco , Niño , Humanos , Hiperamonemia/etiología , Hiperamonemia/terapia , Recién Nacido , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/terapia , Terapia de Reemplazo Renal/efectos adversos , Estudios Retrospectivos
6.
Brain ; 144(9): 2722-2731, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34581780

RESUMEN

Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms. Here we report seven individuals in six families from different ethnic backgrounds with biallelic variants in MLIP, which encodes the muscular lamin A/C-interacting protein, MLIP. Patients presented with a consistent phenotype characterized by mild muscle weakness, exercise-induced muscle pain, variable susceptibility to episodes of rhabdomyolysis, and persistent basal elevated serum creatine kinase levels. The biallelic truncating variants were predicted to result in disruption of the nuclear localizing signal of MLIP. Additionally, reduced overall RNA expression levels of the predominant MLIP isoform were observed in patients' skeletal muscle. Collectively, our data increase the understanding of the genetic landscape of rhabdomyolysis to now include MLIP as a novel disease gene in humans and solidifies MLIP's role in normal and diseased skeletal muscle homeostasis.


Asunto(s)
Proteínas Co-Represoras/genética , Creatina Quinasa , Variación Genética/genética , Enfermedades Musculares/genética , Mialgia/genética , Proteínas Nucleares/genética , Rabdomiólisis/genética , Adolescente , Niño , Preescolar , Creatina Quinasa/sangre , Femenino , Humanos , Masculino , Enfermedades Musculares/sangre , Enfermedades Musculares/diagnóstico por imagen , Mialgia/sangre , Mialgia/diagnóstico por imagen , Rabdomiólisis/sangre , Rabdomiólisis/diagnóstico por imagen , Adulto Joven
8.
Genet Med ; 23(9): 1705-1714, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34140661

RESUMEN

PURPOSE: To investigate monoallelic CLPB variants. Pathogenic variants in many genes cause congenital neutropenia. While most patients exhibit isolated hematological involvement, biallelic CLPB variants underlie a neurological phenotype ranging from nonprogressive intellectual disability to prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, 3-methylglutaconic aciduria, and neutropenia. CLPB was recently shown to be a mitochondrial refoldase; however, the exact function remains elusive. METHODS: We investigated six unrelated probands from four countries in three continents, with neutropenia and a phenotype dominated by epilepsy, developmental issues, and 3-methylglutaconic aciduria with next-generation sequencing. RESULTS: In each individual, we identified one of four different de novo monoallelic missense variants in CLPB. We show that these variants disturb refoldase and to a lesser extent ATPase activity of CLPB in a dominant-negative manner. Complexome profiling in fibroblasts showed CLPB at very high molecular mass comigrating with the prohibitins. In control fibroblasts, HAX1 migrated predominantly as monomer while in patient samples multiple HAX1 peaks were observed at higher molecular masses comigrating with CLPB thus suggesting a longer-lasting interaction between CLPB and HAX1. CONCLUSION: Both biallelic as well as specific monoallelic CLPB variants result in a phenotypic spectrum centered around neurodevelopmental delay, seizures, and neutropenia presumably mediated via HAX1.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Errores Innatos del Metabolismo , Neutropenia , Proteínas Adaptadoras Transductoras de Señales , Humanos , Discapacidad Intelectual/genética , Neutropenia/genética
9.
Mol Genet Metab ; 132(1): 19-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33388234

RESUMEN

BACKGROUND/AIMS: Neonatal onset Urea cycle disorders (UCDs) can be life threatening with severe hyperammonemia and poor neurological outcomes. Glycerol phenylbutyrate (GPB) is safe and effective in reducing ammonia levels in patients with UCD above 2 months of age. This study assesses safety, ammonia control and pharmacokinetics (PK) of GPB in UCD patients below 2 months of age. METHODS: This was an open-label study in UCD patients aged 0 - 2 months, consisting of an initiation/transition period (1 - 4 days) to GPB, followed by a safety extension period (6 months to 2 years). Patients presenting with a hyperammonemic crisis (HAC) did not initiate GPB until blood ammonia levels decreased to below 100 µmol/L while receiving sodium phenylacetate/sodium benzoate and/or hemodialysis. Ammonia levels, PK analytes and safety were evaluated during transition and monthly during the safety extension for 6 months and every 3 months thereafter. RESULTS: All 16 patients with UCD (median age 0.48 months, range 0.1 to 2.0 months) successfully transitioned to GPB within 3 days. Average plasma ammonia level excluding HAC was 94.3 µmol/L at baseline and 50.4 µmol/L at the end of the transition period (p = 0.21). No patient had a HAC during the transition period. During the safety extension, the majority of patients had controlled ammonia levels, with mean plasma ammonia levels lower during GPB treatment than baseline. Mean glutamine levels remained within normal limits throughout the study. PK analyses indicate that UCD patients <2 months are able to hydrolyze GPB with subsequent absorption of phenylbutyric acid (PBA), metabolism to phenylacetic acid (PAA) and conjugation with glutamine. Plasma concentrations of PBA, PAA, and phenylacetylglutamine (PAGN) were stable during the safety extension phase and mean plasma phenylacetic acid: phenylacetylglutamine ratio remained below 2.5 suggesting no accumulation of GPB. All patients reported at least 1 treatment emergent adverse event with gastroesophageal reflux disease, vomiting, hyperammonemia, diaper dermatitis (37.5% each), diarrhea, upper respiratory tract infection and rash (31.3% each) being the most frequently reported. CONCLUSIONS: This study supports safety and efficacy of GPB in UCD patients aged 0 -2 months who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB undergoes intestinal hydrolysis with no accumulation in this population.


Asunto(s)
Glicerol/análogos & derivados , Hiperamonemia/tratamiento farmacológico , Fenilbutiratos/administración & dosificación , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Edad de Inicio , Amoníaco/sangre , Preescolar , Femenino , Glicerol/administración & dosificación , Humanos , Hiperamonemia/sangre , Hiperamonemia/patología , Lactante , Recién Nacido , Masculino , Pediatría , Fenilacetatos/administración & dosificación , Diálisis Renal , Trastornos Innatos del Ciclo de la Urea/sangre , Trastornos Innatos del Ciclo de la Urea/metabolismo , Trastornos Innatos del Ciclo de la Urea/patología
10.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33055427

RESUMEN

Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 µM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.


Asunto(s)
Hígado/metabolismo , Fenilalanina Hidroxilasa/genética , Fenilalanina/genética , Fenilcetonurias/genética , Adolescente , Adulto , Animales , Sistemas CRISPR-Cas/genética , Dieta , Modelos Animales de Enfermedad , Edición Génica , Humanos , Hígado/efectos de los fármacos , Fenotipo , Fenilalanina/metabolismo , Fenilalanina/farmacología , Fenilcetonurias/dietoterapia , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Porcinos
11.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32668217

RESUMEN

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Mutación/genética , Fenotipo , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre
12.
Nat Rev Nephrol ; 16(8): 471-482, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269302

RESUMEN

Hyperammonaemia in children can lead to grave consequences in the form of cerebral oedema, severe neurological impairment and even death. In infants and children, common causes of hyperammonaemia include urea cycle disorders or organic acidaemias. Few studies have assessed the role of extracorporeal therapies in the management of hyperammonaemia in neonates and children. Moreover, consensus guidelines are lacking for the use of non-kidney replacement therapy (NKRT) and kidney replacement therapies (KRTs, including peritoneal dialysis, continuous KRT, haemodialysis and hybrid therapy) to manage hyperammonaemia in neonates and children. Prompt treatment with KRT and/or NKRT, the choice of which depends on the ammonia concentrations and presenting symptoms of the patient, is crucial. This expert Consensus Statement presents recommendations for the management of hyperammonaemia requiring KRT in paediatric populations. Additional studies are required to strengthen these recommendations.


Asunto(s)
Terapia de Reemplazo Renal Continuo/métodos , Hiperamonemia/terapia , Diálisis Peritoneal/métodos , Trastornos Innatos del Ciclo de la Urea/terapia , Arginina/uso terapéutico , Carnitina/uso terapéutico , Niño , Preescolar , Técnica Delphi , Dieta con Restricción de Proteínas , Humanos , Terapia de Reemplazo Renal Híbrido , Hiperamonemia/metabolismo , Lactante , Recién Nacido , Nutrición Parenteral/métodos , Fenilacetatos/uso terapéutico , Fenilbutiratos/uso terapéutico , Guías de Práctica Clínica como Asunto , Diálisis Renal/métodos , Benzoato de Sodio/uso terapéutico , Trastornos Innatos del Ciclo de la Urea/metabolismo , Complejo Vitamínico B/uso terapéutico
13.
Mol Genet Metab ; 129(4): 272-277, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32151545

RESUMEN

Methylmalonate semialdehyde dehydrogenase deficiency (MMSDD; MIM 614105) is a rare autosomal recessive defect of valine and pyrimidine catabolism. Four prior MMSDD cases are published. We present a fifth case, along with functional and metabolomic analysis. The patient, born to non-consanguineous parents of East African origin, was admitted at two weeks of age for failure to thrive. She was nondysmorphic, had a normal brain MRI, and showed mild hypotonia. Gastroesophageal reflux occurred with feeding. Urine organic acid assessment identified excess 3-hydroxyisobutyrate and 3-hydroxypropionate, while urine amino acid analysis identified elevated concentrations of ß-aminoisobutyrate and ß-alanine. Plasma amino acids showed an elevated concentration of ß-aminoisobutyrate with undetectable ß-alanine. ALDH6A1 gene sequencing identified a homozygous variant of uncertain significance, c.1261C > T (p.Pro421Ser). Management with valine restriction led to reduced concentration of abnormal analytes in blood and urine, improved growth, and reduced gastroesophageal reflux. Western blotting of patient fibroblast extracts demonstrated a large reduction of methylmalonate semialdehyde dehydrogenase (MMSD) protein. Patient cells displayed compromised mitochondrial function with increased superoxide production, reduced oxygen consumption, and reduced ATP production. Metabolomic profiles from patient fibroblasts demonstrated over-representation of fatty acids and fatty acylcarnitines, presumably due to methylmalonate semialdehyde shunting to ß-alanine and subsequently to malonyl-CoA with ensuing increase of fatty acid synthesis. Previously reported cases of MMSDD have shown variable clinical presentation. Our case continues the trend as clinical phenotypes diverge from prior cases. Recognition of mitochondrial dysfunction and novel metabolites in this patient provide the opportunity to assess future patients for secondary changes that may influence clinical outcome.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Metabolómica , Metilmalonato-Semialdehído Deshidrogenasa (Acetilante)/deficiencia , Mitocondrias/metabolismo , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/metabolismo , Biopsia , Línea Celular , Femenino , Fibroblastos/metabolismo , Humanos , Recién Nacido , Metilmalonato-Semialdehído Deshidrogenasa (Acetilante)/metabolismo , Fenotipo , Piel/patología , Valina/sangre , Valina/metabolismo , Valina/orina
14.
Mol Genet Metab ; 127(4): 336-345, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31326288

RESUMEN

INTRODUCTION: Glycerol phenylbutyrate (GPB) is currently approved for use in the US and Europe for patients of all ages with urea cycle disorders (UCD) who cannot be managed with protein restriction and/or amino acid supplementation alone. Currently available data on GPB is limited to 12 months exposure. Here, we present long-term experience with GPB. METHODS: This was an open-label, long-term safety study of GPB conducted in the US (17 sites) and Canada (1 site) monitoring the use of GPB in UCD patients who had previously completed 12 months of treatment in the previous safety extension studies. Ninety patients completed the previous studies with 88 of these continuing into the long-term evaluation. The duration of therapy was open ended until GPB was commercially available. The primary endpoint was the rate of adverse events (AEs). Secondary endpoints were venous ammonia levels, number and causes of hyperammonemic crises (HACs) and neuropsychological testing. RESULTS: A total of 45 pediatric patients between the ages of 1 to 17 years (median 7 years) and 43 adult patients between the ages of 19 and 61 years (median 30 years) were enrolled. The treatment emergent adverse events (TEAE) reported in ≥10% of adult or pediatric patients were consistent with the TEAEs reported in the previous safety extension studies with no increase in the overall incidence of TEAEs and no new TEAEs that indicated a new safety signal. Mean ammonia levels remained stable and below the adult upper limit of normal (<35 µmol/L) through 24 months of treatment in both the pediatric and adult population. Over time, glutamine levels decreased in the overall population. The mean annualized rate of HACs (0.29) established in the previously reported 12-month follow-up study was maintained with continued GPB exposure. CONCLUSION: Following the completion of 12-month follow-up studies with GPB treatment, UCD patients were followed for an additional median of 1.85 (range 0 to 5.86) years in the present study with continued maintenance of ammonia control, similar rates of adverse events, and no new adverse events identified.


Asunto(s)
Glicerol/análogos & derivados , Fenilbutiratos/uso terapéutico , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Adolescente , Adulto , Canadá , Niño , Preescolar , Manejo de la Enfermedad , Femenino , Estudios de Seguimiento , Glicerol/efectos adversos , Glicerol/uso terapéutico , Humanos , Hiperamonemia/inducido químicamente , Lactante , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fenilbutiratos/efectos adversos , Estados Unidos , Adulto Joven
15.
Drugs ; 79(5): 495-500, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30864096

RESUMEN

Phenylalanine hydroxylase (PAH) deficiency is an inborn error of metabolism that results in elevated phenylalanine levels in blood. The classical form of the disease with phenylalanine level > 1200 µmol/L in blood is called phenylketonuria (PKU) and is associated with severe intellectual disability when untreated. In addition, phenylalanine levels above the therapeutic range in pregnant female patients lead to adverse fetal effects. Lowering the plasma phenylalanine level prevents intellectual disability, maintaining the level in the therapeutic range of 120-360 µmol/L is associated with good outcome for patients as well as their pregnancies. Patient phenotypes are on a continuous spectrum from mild hyperphenylalaninemia to mild PKU, moderate PKU, and severe classic PKU. There is a good correlation between the biochemical phenotype and the patient's genotype. For over four decades the only available treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy which is effective in up to 55% of patients depending on the population. Cofactor therapy typically is more effective in patients with milder forms of the disease and less effective in classical PKU. A new therapy has just been approved that can be effective in all patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. This article reviews the mainstay therapy, adjunct enzyme cofactor therapy, and the newly available enzyme substitution therapy for hyperphenylalaninemia. It also provides an outlook on emerging approaches for hyperphenylalaninemia treatment such as recruiting the microbiome into the therapeutic endeavor as well as therapies under development such as gene therapy.


Asunto(s)
Fenilcetonurias/tratamiento farmacológico , Femenino , Terapia Genética , Genotipo , Humanos , Mutación , Fenotipo , Fenilalanina/sangre , Fenilcetonurias/dietoterapia , Fenilcetonurias/genética , Embarazo , Complicaciones del Embarazo/dietoterapia , Complicaciones del Embarazo/genética
16.
Hum Mutat ; 39(11): 1569-1580, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30311390

RESUMEN

The ClinGen Inborn Errors of Metabolism Working Group was tasked with creating a comprehensive, standardized knowledge base of genes and variants for metabolic diseases. Phenylalanine hydroxylase (PAH) deficiency was chosen to pilot development of the Working Group's standards and guidelines. A PAH variant curation expert panel (VCEP) was created to facilitate this process. Following ACMG-AMP variant interpretation guidelines, we present the development of these standards in the context of PAH variant curation and interpretation. Existing ACMG-AMP rules were adjusted based on disease (6) or strength (5) or both (2). Disease adjustments include allele frequency thresholds, functional assay thresholds, and phenotype-specific guidelines. Our validation of PAH-specific variant interpretation guidelines is presented using 85 variants. The PAH VCEP interpretations were concordant with existing interpretations in ClinVar for 69 variants (81%). Development of biocurator tools and standards are also described. Using the PAH-specific ACMG-AMP guidelines, 714 PAH variants have been curated and will be submitted to ClinVar. We also discuss strategies and challenges in applying ACMG-AMP guidelines to autosomal recessive metabolic disease, and the curation of variants in these genes.


Asunto(s)
Genoma Humano/genética , Errores Innatos del Metabolismo/genética , Fenilalanina Hidroxilasa/genética , Bases de Datos Genéticas , Frecuencia de los Genes/genética , Pruebas Genéticas , Variación Genética/genética , Humanos
17.
Mol Genet Metab ; 125(3): 251-257, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30217721

RESUMEN

INTRODUCTION: Glycerol phenylbutyrate (GPB) is approved in the US and EU for the chronic management of patients ≥2 months of age with urea cycle disorders (UCDs) who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB is a pre-prodrug, hydrolyzed by lipases to phenylbutyric acid (PBA) that upon absorption is beta-oxidized to the active nitrogen scavenger phenylacetic acid (PAA), which is conjugated to glutamine (PAGN) and excreted as urinary PAGN (UPAGN). Pharmacokinetics (PK) of GPB were examined to see if hydrolysis is impaired in very young patients who may lack lipase activity. METHODS: Patients 2 months to <2 years of age with UCDs from two open label studies (n = 17, median age 10 months) predominantly on stable doses of nitrogen scavengers (n = 14) were switched to GPB. Primary assessments included traditional plasma PK analyses of PBA, PAA, and PAGN, using noncompartmental methods with WinNonlin™. UPAGN was collected periodically throughout the study up to 12 months. RESULTS: PBA, PAA and PAGN rapidly appeared in plasma after GPB dosing, demonstrating evidence of GPB cleavage with subsequent PBA absorption. Median concentrations of PBA, PAA and PAGN did not increase over time and were similar to or lower than the values observed in older UCD patients. The median PAA/PAGN ratio was well below one over time, demonstrating that conjugation of PAA with glutamine to form PAGN did not reach saturation. Covariate analyses indicated that age did not influence the PK parameters, with body surface area (BSA) being the most significant covariate, reinforcing current BSA based dosing recommendations as seen in older patients. CONCLUSION: These observations demonstrate that UCD patients aged 2 months to <2 years have sufficient lipase activity to adequately convert the pre-prodrug GPB to PBA. PBA is then converted to its active moiety (PAA) providing successful nitrogen scavenging even in very young children.


Asunto(s)
Glicerol/análogos & derivados , Lipasa/sangre , Fenilbutiratos/administración & dosificación , Profármacos/administración & dosificación , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Niño , Preescolar , Femenino , Glutamina/sangre , Glicerol/administración & dosificación , Glicerol/sangre , Glicerol/farmacocinética , Humanos , Lactante , Masculino , Nitrógeno/sangre , Nitrógeno/metabolismo , Fenilacetatos/sangre , Fenilbutiratos/sangre , Fenilbutiratos/farmacocinética , Profármacos/farmacocinética , Trastornos Innatos del Ciclo de la Urea/sangre , Trastornos Innatos del Ciclo de la Urea/patología
18.
J Am Soc Nephrol ; 29(7): 1849-1858, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29654216

RESUMEN

Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.


Asunto(s)
Amidinotransferasas/genética , Síndrome de Fanconi/genética , Fallo Renal Crónico/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Anciano , Amidinotransferasas/metabolismo , Animales , Simulación por Computador , Síndrome de Fanconi/complicaciones , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patología , Femenino , Heterocigoto , Humanos , Lactante , Inflamasomas/metabolismo , Fallo Renal Crónico/etiología , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Masculino , Ratones , Ratones Noqueados , Conformación Molecular , Mutación , Mutación Missense , Linaje , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ADN , Adulto Joven
19.
Pediatr Clin North Am ; 65(2): 267-277, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29502913

RESUMEN

Phenylketonuria is a defect in phenylalanine metabolism resulting in the excretion of phenylketones and severe intellectual disability. The principle of eliminating the offending amino acid from the diet as a successful treatment strategy was demonstrated. The development of a low methionine diet to treat homocystinuria was established after identifying the transsulfuration pathway resulting in cysteine synthesis. Both conditions are examples of disorders of amino acid metabolism. Lesch-Nyhan syndrome, a rare disorder of purine metabolism resulting in intellectual disability and self-injurious behavior, is a classical inborn error of metabolism. Disorders of creatine biosynthesis are relatively newly described and less known diseases.


Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Disfunción Cognitiva/etiología , Creatina/metabolismo , Diagnóstico Diferencial , Homocisteína/metabolismo , Humanos , Errores Innatos del Metabolismo/terapia , Metionina/metabolismo , Fenilalanina/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo
20.
Transl Sci Rare Dis ; 3(3-4): 157-170, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30613471

RESUMEN

Organic acidemias and urea cycle disorders are ultra-rare inborn errors of metabolism characterized by episodic acute decompensation, often associated with hyperammonemia, resulting in brain edema and encephalopathy. Retrospective reports and translational studies suggest that N-carbamylglutamate (NCG) may be effective in reducing ammonia levels during acute decompensation in two organic acidemias, propionic and methylmalonic acidemia (PA and MMA), and in two urea cycle disorders, carbamylphosphate synthetase 1 and ornithine transcarbamylase deficiency (CPSD and OTCD). We established the 9-site N-carbamylglutamate Consortium (NCGC) in order to conduct two randomized double-blind, placebo-controlled trials of NCG in acute hyperammonemia of PA, MMA, CPSD and OTCD. Conducting clinical trials is challenging in any disease, but poses unique barriers and risks in the ultra-rare disorders. As the number of clinical trials in orphan diseases increases, evaluating the successes and opportunities for improvement in such trials is essential. We summarize herein the design, methods, experiences, challenges and lessons from the NCGC-conducted trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...